HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis

نویسندگان

  • Heng Lian
  • Xiaorong Li
  • Zhongyuan Liu
  • Yuke He
چکیده

The stamen produces pollen grains for pollination in higher plants. Coordinated development of four microsporangia in the stamen is essential for normal fertility. The roles of miR165/166-directed pathways in the establishment of adaxial-abaxial polarity have been well defined in leaves. However, the molecular mechanism underlying the adaxial-abaxial polarity of the stamen is elusive. Here it is reported that HYPONASTIC LEAVES1 (HYL1), a general regulator of microRNA (miRNA) biogenesis, plays an essential role in establishing the stamen architecture of the four microsporangia in Arabidopsis thaliana. In stamens, HYL1 and miR165/6 expression are progressively restricted to the lateral region, microsporangia, microspore mother cells, and microspores, whereas HD-ZIP III genes are preferentially expressed in the middle region, vascular bundle, and stomium. Loss of HYL1 leads to the formation of two rather than four microsporangia in each stamen. In the stamen of the hyl1 mutant, miR165/6 accumulation is reduced, whereas miR165/6-targeted HD-ZIP III genes are up-regulated and FILAMENTOUS FLOWER (FIL) is down-regulated; and, specifically, REVOLUTA (REV) is overexpressed in the adaxial region and FIL is underexpressed in the abaxial regions, concomitant with the aberrance of the two inner microsporangia and partial adaxialization of the connectives. Genetic analysis reveals that FIL works downstream of HYL1, and the defects in hyl1 stamens are partially rescued by rev-9 or phv-5 phb-6 alleles. These results suggest that HYL1 modulates inner microsporangia and stamen architecture by repression of HD-ZIP III genes and promotion of the FIL gene through miR165/6. Thus, the role of HYL1 in establishment of stamen architecture provides insight into the molecular mechanism of male fertility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis.

Differential growth of tissues during lateral organ development is essential for producing variation in shape and size. Previous studies have identified JAGGED (JAG), a gene that encodes a putative C2H2 zinc-finger transcription factor, as a key regulator of shape that promotes growth in lateral organs. Although JAG expression is detected in all floral organs, loss-of-function jag alleles have ...

متن کامل

Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development.

Two models have been proposed to explain the coordinated development of the four whorls of floral organs. The spatial model predicts that positional information defines the four whorls simultaneously, and that individual organs develop independently of surrounding tissues. The sequential model suggests that inductive events between the outer and inner whorl primordia are required for appropriat...

متن کامل

SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis.

SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8...

متن کامل

Abscisic acid does not influence the subcellular distribution of the HYL1 protein from Arabidopsis thaliana.

HYL1 is a nuclear protein involved in the processing of miRNAs but its exact function remains unknown. Arabidopsis thaliana hyl1 mutants exhibit hypersensitivity to ABA. We decided to answer the question whether ABA affects the HYL1 protein localization within the cell and show that it does not. We also studied the expression of HYL1 in different tissues and organs. In this paper we show for th...

متن کامل

Cell-cell interactions during patterning of the Arabidopsis anther.

Key steps in the evolution of the angiosperm anther include the patterning of the concentrically organized microsporangium and the incorporation of four such microsporangia into a leaf-like structure. Mutant studies in the model plant Arabidopsis thaliana are leading to an increasingly accurate picture of (i) the cell lineages culminating in the different cell types present in the microsporangi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013